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SPECTRAL AND TEMPORAL DISTRIBUTION OF PHASE-CONJUGATED

FLUORESCENT PHOTONS

Henk F. Amoldus
Department of Physics
Mendel Hall
Villanova University
Villanova, Pennsylvania 19085, U.S.A.

and

Thomas F. George
Departments of Chemistry and Physics & Astronomy
239 Fronczak Hall
State University of New York at Buffalo
Buffalo, New York 14260, U.S.A.

Abstract. Spontaneous emission of fluorescence radiation by an atom near the surface of a four-

wave mixing phase conjugator is considered. It is shown that the spectral photon distribution

consists of two Lorentzians, which have their peaks symmetrically located at the two sides of the

pump frequency o of the nonlinear crystal. With @, the atomic resonance, the line at 2(1)—0)o 1s

more than twice as strong as the line at ®,. When the phase-conjugate reflectivity exceeds unity,

the temporal photon distribution exhibits nonclassical behavior. Then, antibunching of photons

prevails, and the photon statistics is sub-poissonian.
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1. Introduction

When two strong counterpropagating laser beams with frequency ) pump a nonlinear
crystal, then this device operates as a phase conjugator (PC) for weak incident radiation on its
surface, due to a four-wave mixing process in the medium. In particular, the electromagnetic
vacuum field interacts with the pump beams, and this results in a spontaneous emission of
photons with frequency o in all directions [1]. When a two-state atom with level separation hw,
is located in the vicinity of the surface of the PC, it can absorb these photons. This leads to
spontaneous excitation of the atom {2,3] through a three-photon process, as illustrated in Fig. 1.
An atom in its ground state | g> absorbs a photon with frequency ®, and subsequently emits
spontaneously a photon with frequency 20-0, The energy-conserving diagram is completed by
a second absorption of a photon with frequency ©, which leaves the atom in the excited state
.e>. This process is reminiscent of the generation of the three-photon line in resonance
fluorescence by an atom in a laser field with frequency ® [4]. After this excitation, the atom
decays spontaneously in the usual way, which produces a photon with frequency ®,. Continuous
repetition of this cycle should lead to a steady emission of photons with frequencies , and

20-,.

The above interpretation of spontaneous emission by an atom near a PC is simply based
on energy conservation. We shall show that the fluorescence spectrum consists indeed of two
lines, which are positioned at ®, and 20w, Furthermore, we shall evaluate the two-photon
correlation function. The antibunching between two w,-photons and between two 2w-,-photons

then reveals the alternating character of the two emission mechanisms from Fig. [.

ty




2. Fluorescence

The surface of the PC is taken as the xy-plane, and the atom with dipole moment B(t)

is located on the positive z-axis at z = h. The positive-frequency part of the fluorescence

radiation field is given by [5]

E = 0 S (M) - 7 (MO m
4me rc’
in the far zone. Here,
T = (h/c)cosO , (2)
and the operator M(f) is defined as
M) = g - Pre 2oy 3)

in terms of the positive- and negative-frequency parts of the dipole operator, and the Fresnel
reflection coefficient P for a plane wave with frequency ®,. We have suppressed the retardation
with -r/c. Equation (1) was derived by solving the Maxwell-Heisenberg equations for a dipole
near the surface of a PC. The term proportional to g(t)(‘) is dipole radiation by an atom in
empty space. This radiation reflects at the surface, with reflection coefficierit P, and this
produces the second term. Due to the phase conjugation, ;_1.(’) is reflected as ;_:.(') , and the
factor exp(-2i®) accounts for the two @ photons in Fig. 1.b.

We shall assume that the radiation passes a polarizer, which transmits the

e

e, ~component of the field (with g;-g 4 =D This component is




-lw,T
O = E@n ey = w,——MW)e; (4)

4ne rct

where we used e; - F = 0. A photomultiplier then counts photons from this filtered field.

With p = <elp |g>, assumed to be real, the field becomes

—iu,x
g = 0L
4neorc

2 (E-J.-ed)'{dT(f) - Pre 894} | (3

in terms of the atomic raising operator d = e

3. Equation of motion

The atomic density operator p(t) obeys the Liouville equation

. d .
17£=(L,,-11’)p,p*=p,Trp=l, (6)

where L, and I" represent the free evolution and relaxation, respectively. With the atomic

Hamiltonian given by
H, = hw,P, + ho P, , (7

in terms of the projectors P, = 1 e><e | and P, = | g><g| onto the excited state and ground state,

respectively, the Liouvillian L, becomes

Lo = 1"H,ol = 0[P, 0 . (8)

Here we used P, + P, = 1 and w, = o, - ®,. Equation (8) defines the action of L, on an arbitrary

Hilbert-space operator O, rather than on the density operator p only. The relaxation operator is [6]




bt

To = —A{P,0 + oP, - 2d'0d)

o B ]

(9

b

+ EAs{Pxo + oP, - 2dod’} .

in terms of the relaxation constants for the excited state and ground state

A, = AQ1 + -;-IPP) , (10)

A, = ZA|P?, (11)
2

respectively. The parameter A is the Einstein coefficient for spontaneous decay in empty space.

Of particular interest is the steady-state density operator p = p(f~), which is the

solution of

(L-iDp =0, pt=p , Trp=1. (12)

We readily find
p=mpP +AP, (13)
in terms of the steady-state level populations
S 1PP

F-2 __  i-1-i&
1+ |P]?

(14)

The finite population of the excited state is due to the occurrence of the three-photon process

from Fig. 1. The transient solution p(t), given an initial state p(0), can also be found easily.




4. Fluorescence spectrum

The stationary spectral distribution of photons in a field &(t)"” is in general given by

@) = SRe[” dt &< EOOE > (15)
T 0

vhere @ 1s the photon frequency and { is an efficiency constant (depending on the aperture ot

:he detector. etc.). The spectraily-unresolved intensity is

[ = [de J(w) = ¢ < EO&O)> 16)

which equals the photon counung rate.

With Eq. (5), the field correlation function in Eq. (15) acquires four centibutions,
{ <&\ V&()>=£<d(0)d"(z)>+E |P|2e 4 <d(0)d(1)>
-iP’e 49T <d(0)d(t)>-£P<dT(0)d'(=)> . (7
where we introduced the parameter
E - C (J)o Q] IE"!dlz . (18)
41teorc“,

The atomic correlation functions in Eq. (17) can be found by wansforming first to the




Schrodinger picture. This yields

<d(O)d'(x)> = Trdte ™" (5d) , (19

and similar expressions hold for the other three correlation functions. With the explicit forms

of L,, I" and p from Sec. 3, we obtain

<d(0)d(v)> = <d'O)d'(x)> = 0 , 20
_ -m,r-é(A,‘A,)f (21
<d0)d'(<)> = n_ e - ,
10,7~ S(A4, +A T (22)
<d'(Q)d(x)> = e * -
for T 2 0. Apparently, the last two terms on the right-hand side of Eq. (17) vanish.
Combining everything gives for the fluorescence spectrum
I, 1
J(w) = — Re
T gy - ie-oe)
2 ¢ (23)
- fg Re 1 )
T 1 . -
E(A0+Ag-) - (w+w,-2w)
where
- - . 24
I, =&, , I =E&P] (24)

The spectrum J(®) is a sum of two Lorentzians, both with a haif-width at half-minimum equal

to %(A,m‘) - —;-A(l P,  Similar results were found by Milonni et al [7] and Gaeta and




Boyd [8]. The values of | P| are in the range 0 < | P| < e, Therefore, the minimum value of
the linewidth is %A , and this width grows indefinitely with increasing (intensity) reflection

P | The first spectral line on the right-hand side of Eq. (23) has a strength equal to L, and is
located at ® = w,. This line is due to the decay process in diagram (a) from Fig. 1. Notice that
I, is proportional to f,, as it should be because the inital state is |e>. Similarly, the second line
has a strength I, and is positioned at @ = 20-0,. The responsible process is the three-photon
process from diagram (b) in Fig. 1. The line strengths as a function of | P|? are shown in Fig.

-~

2. Obviously, both L, and I, vanish for ' P! 2 5 0. For large reflectivity they behave as

1 1
Ijg-= , LJE- =P} , (25)
s > p 5! !
and it always holds that
L2221, (26)
as follows from
| 27
I, =2~ P . (27)

When we designate photons in the I, and I, lines as "e-photons" and “g-photons", respectively,
then Eq. (26) expresses that there are more than twice as much g-photons than there are e-
photons. This can be understood as follows. An e-photon is emitted during ordinary spontaneous
decay, and it propagates either in the positive or negative z-direction. Since the detector is
located in the region z > 0, half the number of e-photons can never reach the detecror. They

travel towards the surface of the PC, and are subsequently annihilated in a four-wave mixing




process inside the medium. The g-photons, on the other hand, always propagate in the positive
z-directicn. This explains the inequality (26), and the factor of 2. The reason why I, has an
upper limit lies in the fact that the process is ordinary spontaneous decay. When the atom is in
| e> at a certain time, it takes a time 1/A to decay and to emit the e-photon. Then the atom has
to be excited again during a g-photon emission before it can emit a subsequent e-photon. This
limits the emission rate to %A (for the positive z-direction), and the detection rate to ¥%§. The
three-photon process, however, is brought about by stimulated transitions, and its repetition rate
can be enhanced unlimitedly by increasing the strength of the "external field" (@-photons).
The spectrally unresolved emission rate is found to be
1=I,+I,,=-21-EIP|2—JJ—3+ Pz : (28)
1 + [P

and its dependence on | P |? is illustrated in Fig. 3.

6. Photon correlations

The temporal characteristics of the fluorescence photons are most conveniently expressed
in terms of the two-photon correlation function L(t,,t,)). By definition, L,(t,,t,)dt,dt, equals the
probability for the detection of a photon in [t,,t, + dt,], together with the detection of a photon
in [t,,t, + dt,], hut independent of detections at other times. The photon correlation function can

be expressed in terms of the incident field on the photomultiplier, according to [9,10]

Lit,t) = O<&a)O8L)OEL) &) > (29)
for t, 2 t,. When the atom is in the steady state p, then Lyt,,t,) depends only on t, and t, through

t, - t;, as can be checked by inspection. Therefore, we shall only consider L,(0,t), with T 2 0.
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With expression (5) for &t)*’, we can work out the right-hand side of Ea. (29) and
express L,(0,t) in terms of atomic correlation functions. Due to the special form of p_) many of
these correlation functions turn out to be zero (as in Eq. (20)). It appears that L(0,t) consists of

four terms and can be written as

LOS) = Y fia O, (30)
ap

where the summation runs over o = e,g and B = e,g. The intensities I, and I, are again the

intensities of the e-line and the g-line, respectively, and the functions fy,(t) are defined as
1 y -
fap®) = - ¥ TRy e™™ R, b, (31)
a
with L = L, - il. The Liouville operators R, and R, are

R0 =d'od = P, <e|aje> (32)

R0 = |P|’dod’ = |P|’P,<glo|g> , (33)
for an arbitrary 6. From Eq. (30) and the definition of L,(0,), it follows that fo(7)I, equals the
probability for the detection of a f-photon at time t = t and an o-photon at time t = 0.

Therefore, f3,(t)dt has the significance of the probability for the detection of a 3-photon at time

* after the detection of an a-photon at time zero. With the properties

et g =plro , (34)




: Tr RJ 5 = , t38)
which can be verified easily, we find from Eq. (31)

. _ (36)
1%13, faa(f) = Ig

This relation expresses that for a long delay time T, the detection of the B-photon becomes

:ndependent of the detection of the a-photon. Combination of Eqgs. (30) and (36) gives

LO®) =Y Ll =1, (37)
ap

where [ = [, + L is the uncorrelated intensity.

The operaor R, can be viewed as the emission operator for an a-photon. Equation (35)
oxpresses that the detection rate I, for a-photons equals & times the expectation value of the
operator R,. The parameter & relates the emission rate to the detection rate. This picture is also
supported by Eq. (31). Reading from right to left, the atom is initially in state p. The action of
R, then corresponds to the emission of the a-photon. Subsequently, the atomic state evolves over
a time T with exp (-iL7), after which the action of Ry causes the emission of the B-photon. The
factor £? relates the two emission rates to detection rates. Finally, Eqgs. (32) and (33) show
explicitly the effect of the action of an emission operator on an atomic density operator. Actic..
of R, on G leaves the atom in the ground state, as represented by the projector P; on . g>, and

cenerates the factor <e | G| e> which is the population of the excited state. This is precisely what

happens in diagram (a) of Fig. 1. The probability for the emission of an e-photon is proportional

11




to the population of |e>, since the atom must be initially in the excited state, and after the
emission the atom is in the ground state. Similarly, the action of R, leaves the atom in | e>, and
the probability for the emission of a g-photon is proportional to <g | & | g>, as expressed by Eq.
(33). This interpretation is consistent with the processes in diagram (b) of Fig. 1.

Of particular interest is the behavior of fa,(t) for small values of 7. When f3,(0) > I, then
the emission of the a-photon enhances the probability for the emission of the subsequent -
photon, as compared to the uncorrelated probability for the emission of a B-photon. When

f34(0) < I3, then the a-emission reduces the probability for a B-emission. With

R.-R -0, (38)

as follows from Egs. (32) and (33), we find

£u0) = £, =0 . (39)
The relation f,_(0) = 0 expresses that the probability for the emission of an e-photon, immediately
following an e-emission, is zero. This should be so, because after the emission of the first e-
photon the atom is in its ground state, and subsequent emission of an e-photon requires that the
atom is in the excited state. This necessary | g> — | e> transition is brought about by a three-
photon process, which takes a finite time. A similar explanation holds for f (0) = 0.

For the other two correlation functions, we find
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9 L., (40)
I‘ n‘

RO 1, 1)
IC nl

showing that the emission of an e(g) photon always enhances the probability for the emission of
a g(e) photon. Also, this is easily understood. The probability for an e-emission is proportional
to the population of |e>. For the uncorrelated emission, the atom is in the steady state p, and
the population fi, is smaller than unity (and, in fact, smaller than 1/2). After a g-emission,
however, the atom is in its excited state with certainty. This explains Eq. (40), and a similar
interpretation can be given to Eq. (41).

When we do not distinguish between e-photons and g-photons, then we have to consider

L(0,7). For T = 0 we obtain

L +x\2
,(0,0) ) i(l x) . x= PP, (42)
L(0,°)  x\3+x

and the corresponding parameter-free curve is shown in Fig. 4. For 0 < |P|? < 1 we have

1,(0,0) > [,(0,0), which means that the emission of the first photon enhances the probability for
the emission of a second photon. This behavior is called "bunching”, indicating that photons tend
to stick together. Antibunching (1,(0,0) < L,(0,00)) occurs for | P|?> 1. The function L,(0,7) is

easily calculated, with the result
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e R (S skl @)
I
where
2 <+
g = (1-x) X 3% 4 (44)
x(x+3)?

This correlation function is shown in Fig. 5 for three values of | P|2.

6. Photon statistics

Photon antibunching is a pure quantum feature of radiation, since it cannot be produced
by any classical field [11]. A related phenomenon is the possibility that quantum radiation has
sub-poissonian photon statistics. This means that the variance G(t)* in the number of detected
photons in [0,t] is smaller than the average p(t), which never occurs for classical fields. Mandel
introduced the Q-factor [12]

Q) = o(t)z - pu@® , (45)
B0

which is negative for sub-poissonian photon statistics. Negative values of Q(t) have been found
experimentally in resonance fluorescence [13,14]. For stationary radiation the average is pu(t) =

It, with I the intensity. The variance can be expressed in L(0,t), and the Q-factor is




QW - % [} dsie-on,0) - B (46)

With Eq. (43) we find for the present problem

2
0w = 28UPD g gy - 1 1 oAy (47)

JRY
(4,+4)

The sign of Q(t) is given by the sign of g(| P|?). Therefore, for | P!?> 1 we have Q(t) < 1 for
all t, and the statistics is sub-poissonian. For small t we find
Qv =Itg(PP) , -0, 43)

showing that Q(t) increases or decreases linearly with t. For t — oo, Q(t) reaches the stationary

value

- 2
Q - limQ - _-J—Zg( P;) . (49)
e g

Recalling that I, A, and A, depend on | P!? we can then write for the | P!? dependence of a

2
1-x VX 3x + 4 x = QPIZ . (50)

5= %
Q A(1+x)2 x+3

The factor £/A is an efficiency factor. We see that Q = (§/A)(4/3) for |P'* —0,Q=0for [P|?

=1, and 6 — ~(&/A) for [P 2 5 . In view of Eq. (45), the value of Q(t) is limited by Q)

15




2 - 1 for any field. The lower limit Q(t) = -1 corresponds to o(t)? = 0, which is the ultimate sub-
poissonian limit. By increasing the phase-conjugate reflectivity | P [?, this lower limit can be
approached arbitrarily closely, apart from the efficiency factor &/A. The dependence of QA/S

on | P|?is shown in Fig. 6.

7. Conclusions

We have studied the spectral and temporal properties of fluorescence radiation, which is
emitted by an atom near the surface of a PC. The fluorescence spectrum was found to be the
sum of two Lorentzians, and the positions of the lines appeared to be consistent with the two
relaxation processes shown in Fig. 1. Three-photon processes contribute more than twice as
much to the fluorescence yield as compared to ordinary spontaneous decay. From the result for
the two-photon correlation function L(0,t), it followed that the fluorescence photons exhibit
antibunching when the reflectivity of the PC exceeds unity. Under the same criterion, the photon

statistics is sub-poissonian.
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Figure Captions

Fig. 1. Diagram (a) corresponds to ordinary spontaneous decay and the emission of a photon
with frequency , . Diagram (b) represents a three-photon process. Two photons with frequency
@ are absorbed (double lines), and the atom gas goes from the ground state to the excited state.
Therefore, the fluorescent photon which is emitted in between the two absorptions must have a
frequency 20-w,.

Fig. 2. Curves e and g represent the strengths I, and I, of the e-line and the g-line, respectively,
as a function of the reflectivity | P|?. We have plotted the dimensionless quantities 1/§ and I/&.
The dashed lines indicate the asymptotic values (| P|? — oo).

Fig. 3. Plot of the total intensity I (divided by &) as a function of | P|2 The dashed line, at I/
= 1| P|?, is the asymptotic limit.

Fig. 4. Photon correlation function for T = 0, relative to its value for T = o, as a function of
'P|% For |P|%> 1 the value of L,(0,0) is smaller than L,(0,e), which reflects antibunching of
photons.

Fig. 5. Curves a, b and c give L,(0,%)/I* as a function of (A, + At for |[P|>=0.5, [P|*=1and
| P|? = 4, respectively. For |P|?=1 we have I,(0,r) = I for all 1, corresponding to perfectly
random (Poisson) detection statistics.

Fig. 6. Plot of the normalized Q-factor, EA/E,, as a function of | P|2 For |P|?=1 we have 5
= 0, which reflects uncorrelated photon statistics. The dashed line at 6A/§ = -1 is the asymptotic

limit.
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